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Tomographic Reconstruction of Two-Phase Flows 
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Tomography has been investigated to observe bubble behaviors in two-phase flows. A bub- 

bly flow and an annular flow have been reconstructed by tomography methods such as an 

algebraic reconstruction technique (ART) and a multiplicative algebraic reconstruction tech- 

nique (MART). Computer synthesized phantom fields have been used to calculate asymmetric 

density distributions for limited cases of 3, 5, and 7 projection angles. As a result of comparison 

of two tomography methods, the MART method has shown a significant improvement in the 

reconstruction accuracy for analysis of the two-phase flows. 
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rms " Normalized rms 

SP " Digital specklegram 

Superscr ipt  

* " Reference field 

1. Introduction 

Two-phase  flows, such as bubbly liquid flows, 

are popular  in many industrial processes. The 

gas-l iquid two-phase flow is related to phase- 

change heat transfer and can be shown in boilers, 

condensers, dryers, heat pipes, air conditioners, 

heat exchangers, etc. Thus, the nonintrusive de- 

termination of the number, location, and size of 

the bubbles is increasingly in demand to measure 

the component fractions and their distributions 

for analysis of the two-phase flows. Also, this 

research can be extended to monitor oil behaviors 

in the refrigeration cycle numerically and experi- 

mentally. 

The tomography methods are effective tools of 

the noninvasive and quantitative measurements of 

the thermal flows (Kak and Slaney, 1987). The 

l ine-of-sight optical projection of the two-phase 

flow is expressed as a ray integral of the refractive 

index gradient normal to the direction of the inci- 

dent ray using a digital speckle system (Franqon, 

1979; Ko et al., 2001) as shown by Fig. 1. The 

beam deflection angle a that is projected on the 

recording plane can be obtained by a ray integral 

Si 

ti r 

/ -  

Fig. 1 Cross sectional density field p(x, y) and its 
projection ,~u for digital specklegram 

of the field density gradient using the Gladstone-  

Dale relation (Kihm, 1997; Partington, 1953): 

where ~kse is the projection of the digital speckle 

analysis, s is perpendicular to, t is parallel to the 

incident ray, and G is the Gladstone-Dale  con- 

stant. 

The optical projection ~f lF of Mach-Zehnder  

interferometry is determined by a difference in 

path length between the reference beam without a 

phase object and the object beam going through 

the phase object. The resulting fringe shifts with 

respect to the undisturbed fringes can be ex- 

pressed by the ray integration of the density field 

as follows (Vest, 1979): 

¢~IF: lAf (n-nrei) d t = G  f (p -prez )d t  (2) 

where ,~ and n denote the laser wave length and 

the refractive index, respectively. Thus, the ray in- 

tegration of the density gradient determines the 

beam deflection angle of the digital speckle sys- 

tem while the number of fringe shifts of the Mach- 

Zehnder interferometry is determined by the ray 

integration of  the density itself. Combining Eqs. 

(1) and (2) gives (Ko and Kihm, 1999) 

~-QF__oS GA ffsf (°- Ore,)dt 
(3) 

G f 8 o  .~, 1 j. 
- ~ J a s -  " = 7  v=~ 

Integrating Eq. (3) along s on the projection 

plane gives 

cw= l~f~,,seds ( 4 )  

Equation (4) states that an integral of the ray 

deflection angle from the digital specklegram, ¢'se, 
along s is equivalent to the interferometric fringe 

shift number ff~F. Thus, the results obtained from 

the Mach-Zehnder  interferometry such as the 

fringe shifts can be compared with those of the 

digital specklegram such as the deflection angles. 
The deflection angle ~se and the fringe shift 

~kZF in Eqs. (1) and (2) must be inverted to re- 

construct the true density field p(x, y) and this 
inversion is called tomography (Fomin, 1998) for 
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the case of the asymmetric density field. The alge- 

braic reconstruction technique (ART) (Gordon, 

1974) and the multiplicative algebraic reconstruc- 

tion technique (MART) (Verhoeven, 1993) un- 

dertake the task of inversion for the two-phase 

flow in this study. Since Eq. (1) correlating the 

projection and the density field is non-algebraic, 

the conventional algebraic reconstruction tech- 

nique (ART) cannot invert Eq. (1). Thus, the 

non-algebraic digital specklegram data should be 

integrated numerically in the projection plane by 

Eq. (4) to convert the projections into the alge- 

braic inteferometric data so that the latter can be 

converted by the ART or MART. While the to- 

mography was confirmed experimentally for sin- 

gle-phase flows in previous studies (Kastell et al., 

1992 ; Ko and Kihm, 1999 ; Ko et al., 2001), the 

ART and MART for the two-phase flow have 

been examined numerically by using computer- 

synthesized bubbly and annular flows in this 

study. 

2. Tomographic Reconstruction 
Algorithms : Algebraic Reconstruction 
Technique (ART) and Multiplicative 
Algebraic Reconstruction Technique 

(MART) 

For a cross sectional density field, one can 

represent the field as a series of basis functions 

allowing their parameters to be optimally deter- 

mined. The tomography undertakes the optimi- 

zation task for the linear case where each basis 

function is defined by a single parameter (usually 

its unknown height with a fixed spread). The 

location of each basis function is given as 

] K  

f ( x ,  3' )=~-] .Ojb(x-x~,  y -y~)  (5) 
j = l  

where f is an object function that represents the 

field to be reconstructed, b is a general form of the 

basis function located at (x~, YJ), and Oj is the 

height coefficient of the j - th  basis function cen- 

tered at a fixed location of (x~, 30). The (xj, yj) 
positions form a rectangular array of J equally 

spaced points in the x direction and K in the y 

direction. Thus, J K  is the total number of co- 
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efficients to be estimated by the reconstruction 

algorithm. The use of a smooth basis function 

such as the cubic B-spline function can accurately 

represent a relatively smooth object field with 

far fewer coefficients (unknowns) than with the 

square-pixel basis function. An optimized set of 

these unknowns must be found to minimize the 

deviations between the virtual projection ~ of an 

intermediate object function and the measured 

projection ~k of the actual field f .  

A comparative study (Hanson and Wecksung, 

1985) of the choice of basis functions suggests 

the use of the cubic B-spline, described in the x 
variation by 

bz(x-xj) (2'Jx-lz-x~l)3-4(~x-lx-xjli~ 
4A/ [ x-x~ [< Ax 

_ (2A~-I x-xj[) 3 ~<1 x- ~ l < _ 2 A x  (6) 
4A3 - . 

=0, Ix-xj[>2A~ 

where Z/is the grid spacing, bx is equal to one at 

x=xj ,  0.25 at x = x , ± A x ,  0 at x=xj±2Zlx  and 

thereafter. The y variation by is similar, and the 

two-dimensional basis function is the product of 

the two, i.e., b ( x - x j ,  y - y j ) = b x ( x - x s ) X b y  
( y - y j )  as shown by Fig. 2. All of the ART and 

MART results in this research use the cubic B- 

spline basis function. 

The projected ray sum ~k~ can be obtained as 
follows : 

¢'i= ~_~0~ x--xj ,  y--yj)  dt (7) ,= 

where i --= 1, 2, ..-, PR is the total number of ray 

sums for the number of equally angled projec- 

1 . 0  
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Fig. 2 Cubic B-spline basis function 
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tions P, and the number of ray sums per each 

projection R. Equation (7) can be expressed in 

matrix form as follows: 

¢s= w o  (8) 

where ¢~ is the measurement ray sum vector, Wis 

the projection matrix, and O is the object vector 

to be reconstructed. Solving this set of P R  linear 

algebraic equations (one equation for each 

measured ray sum) is the goal of the series- 

expansion technique such as the ART or MART 

in J K  unknowns. 

The ART algorithm is the basically iterative 

solver of systems of linear equations (Eq. (8)) 

adapted to the particular problem of tomographic 

reconstruction for an object vector O. The ART 

uses the feedback information on the deviation of 

the virtual projection from the measured projec- 

tion and iteratively optimizes the object 

coefficient vector O by an algebraic updating as 

follows : 

~ i - ( w .  0 ~} J'~ 
Oq+l=Oq+ Wi, ~,Wi,j#=O (9) JK , , 2  

j~=lWi,j ) j = l  

where (x, y )  denotes the inner product of vectors 

x and y, q indicates the iteration number, wi is 

the /-th row of the projection matrix, and !~'i is 
]If 

the corresponding measured ray sum. If ~'] wi, j=O, 
3"----1 

0 is left unchanged. This algorithm per|brms the 

iteration on a ray-by-ray basis until convergence 

is reached. The object coefficients are enforced at 

each iteration by setting coefficients that are less 

than zero after an iteration step to zero. The 

initial object O ° for all ART results in this res- 

earch is a ] K  dimensional zero vector. 

Equation (8) can be expressed by the use of the 

matrix equation as follows : 

Q = w~, u,~ ... w ~  02 
(w,, 0>=  (10) 

where the first matrix denotes the virtual projec- 

tion from calculation, the second matrix is termed 
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the projection matrix, and the third is the object 

matrix to be reconstructed iteratively. Thus, the 

numerator of Eq. (9), the deviation between the 

virtual projection ~'~ and the measured projection 

Or,. of the actual field, can also be written from 

Eq. (10): 

( l l )  

where i =1,  2, "-, PR. The coefficients of the 

projection matrix tbr the case of the square-pixel 

basis function are all zero and one. If the ray 

passes through a square-pixel, then the value of 

the coefficient of the square-pixel is one. Other- 

wise, it is zero. However, the coefficients of the 

projection matrix for the cubic B-spline basis 

function have all different values by Eq. (6) 

depending on the distance from the fixed location 

(x~, y;). Thus, the cubic B-spline basis function is 

advantageous for the relatively complex object. 

Multiplicative algebraic reconstruction tech- 

nique (MART) differs from the ART only in the 

way the deviation between the virtual projection 

and the measured projection ~i is distributed 

among the object coefficients. The MART uses an 

element Cj of the multiplicative correction vector 

C as tbllows : 

~ + ~ = ~  

05.i/, 
1, otherwise 

(12) 

where q denotes the q-th iteration and the nor- 

malized weighting factor Wi.; is equal to wi#/ 

Wm~x where Wmax is the largest element of the pro- 

jection matrix W. One advantage of using MART 

is to ensure a non-negative object field in recons- 

tructing non-negative scalar. 

Note that these algorithm updates, in principle, 

are possible only for algebraic projections in 

which the ray integration of the field directly 

gives the projection data, such as in interferome- 

try (Eq. (2)). Therefore, for the digital spec- 

klegram the ray sum must be changed from !lrse to 

~*F by Eq. (4) and the ART and MART must 

also be modified for the speckle projections. 
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3. Phantom R e f e r e n c e  Fields and 
Reconstruct ion  Errors 

The A R T  and the M A R T  are investigated us- 

ing two different computer  synthesized phantom 

density fields to reconstruct the two-phase  flows. 

The first one is called the annu la r  flow expressed 

by 

= { 0 ,  ExZ + (y-O.O5)Z]x/2~o.4 
f(x, y) 

I, otherwise (13) 

which constructs one big gas bubble  in a circular 

l iquid flow as shown by Fig. 3(a) .  The x and y 

axes have been fixed from --0.5 to 0.5 for this 

normalized phantom density field. Al though the 

real two-phase  flow is not so realistic, the tomo- 

graphy has been developed init ially to reconstruct 

the density dis t r ibut ion of the relatively simple 

Proiection #3 ~ ¢ Projection #2 

V 
0.5 

.,I i 

i I 
-0.~ 

.5 0.5 

(a) Annular flow 

0.5 

(b) Bubbly flow 

Fig. 3 

Projection. 1 

Projection # ! 

Computer synthesized two-phase phantom 
fields including projection angles 

and slow two-phase  flow such as the synthesized 

phantoms and it can be modified to calculate the 

actual case on the basis of this study. 

The second phantom is composed of a set of  

seven bubbles in the two-phase  flow. individual  

bubble  boundaries  are described by ellipses or 

circles as tbllows : 

y- J 
f ( x , y : A j ) =  0 , \  aj / k bj <-O(14)  

I, otherwise 

where As = (x~, y~, a~, b~, c~), whose components  

correspond to the location coordinates of the 

center and the major  and minor  axes of the ellipse 

or the circle. Thus, A~ of the reference phantom is 

described as follows (Fig. 3 (b)) :  

A,'= (A~: Az: A3: A~; As: A6: A~) 
=(0.0, 0.3, 0.2, 0.1O, 1.0: 0.3, 0.15, 1.0, 1.0, 0.0025 : 

0.15, 0.0, 0.08, 0.07, 1.0; 0.2, -0.2, 0.07, 0.08, 1.0; (15) 

-0.1, -0.25, 0.08, 0.07, 1.0: 

-0.25, -0.I, 0.07, 0.08, 1.0; 

-0.25, 0.1, 1.0, 1.0, 0.0025) 

where the superscript '*" refers to the reference 

field. The A2 and Az have been synthesized as the 

circles while the others are ellipses. The nor- 

malized field impedance is 0 for the region inside 

the bubble  and 1 for l iquid outside the bubble.  

The annula r  and the bubbly  flows usually appear 

in the two-phase  flow for the case of the high 

bubble  velocity (relatively faster than liquid ve- 

locity) and the low bubble  velocity, respectively 

as shown in Fig. 4. As the heat is added more or 

the velocity of the bubble  increases compared 

with the liquid velocity, the bubbly  flow can be 

changed into the annu la r  flow. 

°"1 ~ ...... -. L. 'i ! ~  ; : : . ,  ! I ~j 

. . . .  I i. 
,," ::<:,:o ~b. ~' ( ~ " : ~  " . . . . .  - . . . . . .  ' . . . . . .  ,"~! 

' ,  ° u  o o ~ . {  ~ e • o '  ' 0  " - .  . 

4 + -4---:- . . . . . . . . . .  .I 
I B u b b h  I]0~% , ~ ~1~{ ~n l ]  ~ d ~  f l n ~  / & l l l l l l l r l r  flOCk I 

Fig.  4 Schemat ic  o f  t w o - p h a s e  f l ows  in ho r i zon ta l  
pipe 
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Three different error measurements are used in 

this research. The first is the average error of  the 

reconstructed object function 7 and the rel~rence 

phantom function f (Ko et al., 1997): 

JK 

~ I S(x>, y>)-f(x~, y~;tl 
ffJavg = ~=1 J K  (16) 

where J / t"  is the total number  of  the basis func- 

tions used to conform to the reconstructing object 

functions. The second is a normalized rms error : 

~ r ~ s =  j-I IK • (17) 
~,[S(xj, y j ) _ f  ]2 
j= 1 

where f is the average value of  the phantom field 

f .  The normalized rms error is large if there are 

a few large errors in the reconstruction. The third 

one is a normalized absolute e r ro r :  

JK 

~ o s  = j=l ss~ (18) 
~1 S ix,, .v~)l 

which emphasizes the effect of  many small errors. 

Note  that these three errors measure the recon- 

struction quality based on the compar ison be- 

tween the reconstrticted field (object function) 

and the true field (phantom function) (kiu et al., 

1989). in a real experiment,  however,  the true 

field is unknown and the quality of  reconstruction 

is only measured by compar ing  the virtual pro- 

ject ion lb against the measured project ion !k. 

4. R e s u l t s  and D i s c u s s i o n  

The two reconstruction algorithms, the A R T  

and M A R T  were used to reconstrtlct the two 

phantom fields under the interferometric projec- 

tions since the digital speckle projections can be 

converted to the interferometric projections by 

Eq. (4). For  the annular  flow each projection 

consists of  300 rays ( R = 3 0 0 ) :  the object field is 

described by 5 0 × 5 0  cubic B-spline basis func- 

tions ( N = 2 5 0 0 ) .  The number  of  the basis func- 

tion was varied to test different cases. The resolu- 

tion was not acceptable for the density distributi- 

on of  the two phase flow of the smaller number  
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of the basis functions than 2500. If the number  of  

the basis function increases, the number  of  the 

projected data should be increased to obtain the 

proper results. Thus, the number  of  the basis 

function has been fixed to be 2500 for this number 

of  the projected data to calculate the accurate 

results. For  the case of  the bubbly flow each 

projection consists of  500 rays ( /7=500)  and the 

number  of  basis functions is N = 5 0 × 5 0 = 2 5 0 0 .  

When the iteration exceeds the opt imum iteration 

steps, artifacts may violate the convergence res- 

tilting in gradual ly increasing errors (Decker, 

1993). Thus, the calculat ions are ceased when the 

min imum is reached for the discrepancy between 

the reconstructed field and the phantom field. 

Because the field is asymmetric, more than one 
projection angle are required to reconstruct the 

density distr ibution accurately. Thus, the recon- 

struction calculat ions were performed with 3, 5, 

and 7 equally angled projections ( P = 3 ,  5, and 7) 

within 180 ° . For  example, the interval of  the pro- 

ject ion angle for the case of  3 projections is 60 ° 

as shown in Fig. 3. 

Al though the results of  the A R T  and M A R T  

show some errors for the reconstruction of  the 

annular  flow under 3 projections (Figs. 5 (a) and 

(b) ) ,  the A R T  and M A R T  reconstruct the an- 

nular flow precisely under 5 and 7 projections 

because of  the simplicity of  the flow shape as 

shown in Figs. 5(c) to (13. Under  3 projections,  

which may be regarded as the minimally required 

projections to perceive an asymmetric object no 

matter how simple the shape, the M A R T  result 

shows better reconstruction than that of  the A R T  

as shown in Table  1. The mult ipl icat ive recon- 

struction algori thm shows the advantage for the 

two-phase  flow that has simply two density va- 

lues for liquid and gas because the updating 

method of  the M A R T  is more appropr ia te  for the 

two-phase  flows than that of  the ART.  From Fig. 

5, the number  of  the project ion angles is unneces- 

sarily large for the case of  7 projections because 

the error of  the case of  5 projections already 

shows zero percent as shown in Table  1. Thus, the 

required number of  the projection angle can be 

less than 5 for this kind of  the s imple-shaped 

flow. 
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T a b l e  1 Com~ )arison of  reconst ruct ion errors between M A R T  and A R T  

N u m b e r  of  P h a n t o m  Recons t ruc t ion  
project ions  field Techn ique  

M A R T  1.96 7.35 3.69 
A n n u l a r  

A R T  3.04 11.45 15.29 

M A R T  10.16 41.36 17.80 
Bubbly  

A R T  12.15 

M A R T  

51.54 

0.00 0.00 

21.30 

0.00 
A n n u l a r  

A R T  0.00 0.00 0.00 

M A R T  1.12 4.55 1.96 
Bubbly  

A R T  12.49 3.04 

0.00 M A R T  

6.55 

0.00 

5.33 

1 . 6 0  

0.00 
A n n u l a r  

A R T  0.00 0.00 0.00 

M A R T  0.00 0.00 0.00 
Bubbly  

A R T  2.80 
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]Fig. 5 Reconstructed fields of  annu la r  flow using 

A R T  and  M A R T  
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The MART reconstruction of the bubbly flow 

also shows improvement over the ART in Fig. 6. 

Both of the ART and the MART reconstructions 

of the bubbly flow under 3 projections are hardly 

acceptable because of the excessive artifacts as 

shown in Figs. 6(a) and (b). Under 5 projec- 

tions, the ART result also shows the erroneous 

and noisy data (Fig. 6(c)) whereas the M A R T  

result roughly identifies seven bubbles in the 

density field (Fig. 6(d)) .  If the number of the 

projection angle increases, the reconstructions 

provide definitely more accurate results as shown 

in Figs. 6 (e) and (f). As the case of 5 projections, 

the MART of 7 projections also calculates better 

density distributions than that of the ART. The 

average error appears to be perfect zero percent 

for the case of 7 projections in Table I. Thus, 

the MART with more than 5 projections is ap- 

propriate for the case of  relatively complex bub- 

bly flow. After tomographic reconstruction, the 

results of the density distribution are obtained 

between 0 and l instead of only 0 and 1. Thus, the 

values have been changed to 0 and I using the 

threshold because only two densities of liquid and 

gas exist in the flow. If the calculated values are 

not divided into two values, the calculated results 

0 3  

"0"6.5 0 0.5 

(a) Annular flow under 3 (b) Bubbly folw under 3 

projections projections 
o.5 - - ~ . ,  - - ~  o.s I . s - - : ~ . ~  
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Fig. ? Reconstructed fields using MART without 
adjusting calculated values 
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have various values between 0 and 1 as shown in 

Fig. 7 with the interval of 0.2 (Kihm et al., 1998). 

Table 1 presents a comparison of three errors 

(Eqs. (16) to (18)) for the reconstruction results. 

The average, rms, and absolute errors are various 

measures of the reconstruction accuracy for the 

annular and bubbly flows. These errors are sig- 

nificant when comparing tomographic algorithms 

using a known reference fields. The reconstruc- 

tion quality is only estimated by the comparison 

between the virtual projection ,~ and the mea- 

sured projection ~k in real experiments because the 

true field is unknown. For all the tested cases, the 

reconstruction errors of the MART are lower 

than those of the ART method. 

The number of iterations for the minimum 

error can be pointed out to stop the iteration step 

and reconstruct the field at that point (Figs. 8 and 

9). Some graphs have been drawn until 1000 

iteration steps for x-axis while others drawn until 

more than 1000 iterations to find the optimum 

point of the error. Since the error of Fig. 8(a) did 

not reduce significantly alter 1000 iteration steps 

especially for the MART, the graph was drawn 

until 1000 iterations for this case. The graphs for 

Figs. 9(a) and (b) were drawn until 2000 and 

4000 iteration steps, respectively because the av- 

erage error and the reconstructed results did not 

improve obviously after those iteration steps. The 

numbers of the iterations of the bubbly flow to 

reach the minimum errors are larger than those of 

the annular flow because the shape of the bubbly 

flow is more complex than that of the annular 

flow. In comparison of the ART with the MART, 

the MART approaches the minimum error faster 

than the ART does as shown in Figs. 8 and 9. If 

the number of the projection angle increases, the 

number of the iteration for the minimum error 

also reduces (Figs. 8 and 9). 

The computational times are almost same for 

the ART and the MART. The computational 

load depends on the number of the projection 

angles (the number of the projected data) and the 

shape of the phantom fields. The computational 

times of the annular flow for 3, 5, and 7 projec- 

tion angles are I min. 35 sec., 2 min. 38 sec., and 

3 min. 42 sec., respectively in the computer with 
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MART reconstructions for bubbly flow 

the C P U  of  P4 1 . 6 G H z  and the R A M  of  768 

Mbytes. The loads o f  the bubbly  f low for 3, 5, and 

7 projection angles are 3 min.  32 sec., 5 min. 47 

sec., and 8 min.  46 sec., respectively in the same 

computer. The M A R T  shows better accuracies 

and less iteration steps as compared with the 
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A R T  to reconstruct the bubble  images in the 

two-phase  flows. 

5. C o n c lu d in g  R e m a r k s  

The algebraic reconstruction technique (ART)  
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and the multiplicative algebraic reconstruction 

technique (MART) have been investigated for 

the purpose of using tomographic reconstruction 

of the density distribution of the two-phase flows. 

The computer synthesized phantom fields such as 

the annular and bubbly flows have been recons- 

tructed by the ART and the MART to examine 

the accuracy and efficiency of the methods. In 

comparison with the ART reconstruction, the 

MART shows improvement in reconstruction ac- 

curacy for the two-phase flows. Also, the MART 

shows faster convergence of the number of the 

iteration step to reach the minimum error for the 

reconstruction of the annular and bubbly flows. 
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